Logo ICCAS Logo ICCAS
Profilbild

headline-markerDr. Alexander Oeser

Software Developer, Synagen GmbH Dresden

alexander.oeser@medizin.uni-leipzig.de

Background and Position

I’m an alumni of the Leipzig University of Applied Sciences since 2015 and finished my studies with a Master of Engineering (M.Eng.) degree in Engineering Economics. My academical focus was mainly on digital product development. In addition, I’ve been at ICCAS as a scientific assistant since 2011. In late 2016, I’ve joined the Digital Patient Model (DPM) research group to support the development of patient- and information models in head and neck oncology.

Since the beginning of 2020, I’m taking care of development tasks associated with the H2020 ERA-NET project “ProDial” as a senior scientist. Furthermore, I am involved in the AG  Artificial Intelligence in Hematology for the development of AI-assisted solutions for clinical decision-support.

Research Areas

  • Patient- and Information Modeling
  • Knowledge Engineering and Knowledge Fusion
  • Artificial Intelligence and Machine Learning
  • Risk Assessment and Prediction
  • Medical Software Architecture and Development
  • Frontend and User Experience Development

Publications

No items found.

1.
Oeser A, Grieb N, Gaebel J, Franke S, Kubasch AS, Merz M, et al. Künstliche Intelligenz in der Entscheidungsunterstützung und medikamentösen Tumortherapie. Onkologie [Internet]. 2024 [cited 2024 May 15];30(5):380–7. Available from: https://link.springer.com/10.1007/s00761-024-01487-1
2.
Grieb N, Schmierer L, Kim HU, Strobel S, Schulz C, Meschke T, et al. A digital twin model for evidence-based clinical decision support in multiple myeloma treatment. Front Digit Health. 2023;5:1324453.
3.
Grieb N, Oeser A, Kubasch AS, Wang SY, Lilienfeld-Toal M von, Yomade O, et al. P-212: Quantifying the average treatment effect of single vs. tandem autologous stem cell transplantation in newly diagnosed multiple myeloma using causal inference. In: Clinical Lymphoma, Myeloma and Leukemia [Internet]. Elsevier; 2022 [cited 2022 Dec 5]. p. S151–2. Available from: https://www.clinical-lymphoma-myeloma-leukemia.com/article/S2152-2650(22)00542-0/abstract
4.
Buyer J, Oeser A, Grieb N, Dietz A, Neumuth T, Stoehr M. Decision Support for Oropharyngeal Cancer Patients Based on Data-Driven Similarity Metrics for Medical Case Comparison. Diagnostics (Basel). 2022 Apr 15;12(4):999.
5.
Huehn M, Gaebel J, Oeser A, Dietz A, Neumuth T, Wichmann G, et al. Bayesian Networks to Support Decision-Making for Immune-Checkpoint Blockade in Recurrent/Metastatic (R/M) Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel). 2021 Nov 23;13(23):5890.
6.
Kubasch AS, Grieb N, Oeser A, Neumuth T, Yomade O, Hochhaus A, et al. Predicting Early Relapse for Patients with Multiple Myeloma through Machine Learning. In: Blood [Internet]. 2021 [cited 2022 Dec 5]. p. 2953. Available from: https://www.sciencedirect.com/science/article/pii/S0006497121048904
7.
Kubasch AS, Oeser A, Grieb N, Meschke T, Weigert A, Gloaguen S, et al. Development of a semantic and causal model for treatment decision making in myelodysplastic syndromes. In: Jahrestagung der Dt Gesellschaft für Hämatologie und Medizinische Onkologie (DGHO). 2021.
8.
Nenoff K, Grieb N, Oeser A, Neumuth T, Platzbecker U, Kubasch AS. [Künstliche Intelligenz in der Hämatologie]. InFo Hämatologie und Onkologie. 2021;24(12):10–2.
9.
Müller J, Stoehr M, Oeser A, Gaebel J, Streit M, Dietz A, et al. A visual approach to explainable computerized clinical decision support. Computers & Graphics [Internet]. 2020 Oct 1 [cited 2020 Jul 14];91:1–11. Available from: http://www.sciencedirect.com/science/article/pii/S0097849320300935
10.
Gaebel J, Wu HG, Oeser A, Cypko MA, Stoehr M, Dietz A, et al. Modeling and Processing Up-To-Dateness of Patient Information in Probabilistic Therapy Decision Support. Artif Intell Med 2020 [Internet]. 2020 [cited 2020 Mar 12];101842. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0933365719302945
11.
Oeser A, Gaebel J, Kuhnt T. Development of an Assistance System for the Intuitive Assessment of Laboratory Findings in Oncology. Current Directions in Biomedical Engineering [Internet]. 2019 [cited 2019 Oct 2];5(1):61–4. Available from: https://www.degruyter.com/view/j/cdbme.2019.5.issue-1/cdbme-2019-0016/cdbme-2019-0016.xml?format=INT
12.
Gaebel J, Oeser A, Dietz A, Oeltze-Jafra S. Bayesian Networks for Oncological Therapy Decision Support. In Edinburgh; 2018.
13.
Gaebel J, Wu HG, Oeser A, Oeltze-Jafra S. System Infrastructure for Probabilistic Decision Models in Cancer Treatment. In: Building Continents of Knowledge in Oceans of Data: the Future of Co-Created eHealth. Göteborg; 2018.
14.
Oeser A, Gaebel J, Dietz A, Wiegand S, Oeltze-Jafra S. Information architecture for a patient-specific dashboard in head and neck tumor boards. Int J Comput Assist Radiol Surg. 2018 Mar 28;
15.
Gaebel J, Oeser A, Müller J, Schreiber E, Oeltze-Jafra S. Probabilistic Patient Modeling for Therapeutic Decision Support in Oncology. 23rd ISfTeH International Conference on Telemedicine and eHealth; 2018 Mar 24; Helsinki.
16.
Oeser A, Gaebel J, Müller J, Franke S. Design Concept of an Information System for the Intuitive Assessment of Laboratory Findings. In: Proceedings of the 2017 Workshop on Visual Analytics in Healthcare (VAHC 2018). San Francisco, CA; 2018.
17.
Gaebel J, Schreiber E, Oeser A, Oeltze-Jafra S. Modular Architecture for Integrated Model-Based Decision Support. Stud Health Technol Inform. 2018;248:108–15.
18.
Gaebel J, Wu HG, Oeser A, Schreiber E, Oeltze-Jafra S. Modular Architecture for Integrated Model-Based Decision Support. In: 12th Annual Conference on  Health Informatics meets eHealth. 2018. p. accepted.
19.
Maktabi M, Birnbaum K, Oeser A, Neumuth T. Situation-dependent medical device risk estimation: Design and Evaluation of an equipment management center for vendor-independent integrated operating rooms. J Patient Saf. 2017;in print.
20.
Oeser A. Conceptual development of a remote cockpit for the use in telesurgery. 2015.